

Infection prevention and control

David Speers

"With a little luck, they may revere us as gods."

A difficult battle

Host - older, multiple medical problems, immunosuppression, more invasive devices

Does resistance matter?

Mortality associated with initial inappropriate therapy in patients with serious infections

Rello et al. Am J Respir Crit Care Med 1997;156:196–200; Kollef et al. Chest 1998;113:412–420 Ibrahim et al. Chest 2000;118:146–155; Luna et al. Chest 1997;111:676–685

Addressing the Spread of Antibiotic Resistance

- Antimicrobial stewardship
- Infection **prevention** and control
 - Concentrate on prevention because control is after the fact
 - We need to be proactive, not reactive
 - If you stop the patient acquiring the Superbug you don't have to treat them and therefore don't contribute to the selective pressure for resistant organisms
 - The better the job of prevention the less you notice the problem avoided

An effective infection prevention program has many elements

Infection prevention must be part of standard practice

- Governance to have the appropriate processes and protocols in place:
 - For MRSA, MSSA: aseptic technique, e.g. for venous cannula insertion
 - Equipment sharing, environmental cleaning
- Staff must be aware of the importance of prevention
 - Education, awareness, e.g. hand hygiene signage
- Staff must know how to prevent infections
 - e.g. training in aseptic technique, aware of equipment disinfection protocols
- Funding must be adequate
 - Must have funds allocated to provide the appropriate facilities and equipment, training, monitoring, auditing

Prevention is about understanding the modes of transmission

- Superbugs can only pass from one patient to another by physical contact with the bacteria:
 - The hands of healthcare workers
 - On contaminated shared equipment
 - From contact with contaminated environmental surfaces
- Superbug transmission
 - MRSA
 - skin
 - CPE, ESBL, VRE
 - faeces

Prevention is about understanding the epidemiology

- Is the superbug endemic or exotic?
 - Endemic:
 - No easily identifiable risk factor for screenng
 - Risk of any patient being colonised greater

> concentrate on universal precautions rather than screening and use a set of precautions as part of standard practice to stop all MRO transmissions

- Exotic:
 - Easily identifiable source, e.g. recent admission to overseas hospital
 - Screen only those at increased risk

> concentrate on source identification by screening and place barrier precautions around screen positive patients

The most challenging MROs

- MRSA
- VRE
- Multi-drug resistant gram negative organisms
 - Carbapenemase producing Enterobacteriaceae (CPE)

WA Referred MRSA isolates

HISWA MRSA Data

Aggregate inpatient healthcare associated MRSA infections

Vancomycin Resistant Enterococci

Western Australia 1998 – 31st December 2015: 3,386 *vanA* and *vanB E faecalis* and *E faecium isolates*

YEAR

SCGH vanA and vanB E faecium and E faecalis

Quarterly

CPE is riding the crest of the worldwide ESBL wave

• ESBL

– E. coli, Klebsiella pneumoniae

- Carbapenem resistant enterobacteriaceae
 - E. coli, Klebsiella pneumoniae

Global ESBL Trends

%ESBL in the Asia Pacific region

Proportion of 3rd generation cephalosporin-resistant *E. coli*, EARSS data

2006

2012

The treatment of ESBL

Antibacterial agent	<i>E.</i> $coli \ (n = 98)$			
	CTX-M positive $(n = 72)$		CTX-M negative $(n = 26)$	
	n	%	n	%
Gentamicin	63	88	16	62
Trimethoprim	65	90	21	81
Ciprofloxacin	68	94	19	73
Piperacillin/tazobactam	32	44	5	19
Aztreonam	66	92	16	62
Cefoxitin	31	43	3	12
Ceftazidime	70	97	15	58
Cefotaxime	72	100	18	69
Cefpodoxime	72	100	26	100
Cefepime	61	85	12	46
Meropenem	0	0	0	0
Ertapenem	0	0	0	0

Australian Group on Antimicrobial Resistance

AGAR

Figure 3.9. Klebsiella pneumoniae. Percentage (%) of invasive isolates with resistance to carbapenems, by country, EU/EEA countries, 2013

Antimicrobial Resistance Surveillance in Europe 2013

WA CPE Confirmations

Most CPE detections are our endemic IMP CPE (blue) which show
less epidemic potential

Where is the CPE risk in WA?

- Hospital 'Border security' in place
 - all those admitted to overseas HCF within last 12 months screened and isolated until cleared
- Hospital screening will not capture community introductions

Extended spectrum beta-lactamase testing of community Enterobacteriaceae in the west of Australia: poor performance of phenotypic methods

AMY STOKES¹, GRANT O'BRIEN¹ AND MILES H. BEAMAN^{1,2,3}

¹University of Notre Dame Australia, Fremantle, ²Department of Microbiology, Western Diagnostic Pathology, Myaree, and ³School of Pathology and Laboratory Medicine, University of Western Australia, Perth, WA, Australia

- Community introduction most likely to be detected from UTI of RCF residents
 - Sentinel for MRSA, ESBL

What should we do to prevent the acquisition of superbugs?

- Prevention of Superbug infections
 - Continue to improve hand hygiene
 - Mandate aseptic technique training and competency
 - esp PVC insertion
 - Mandate shared equipment disinfection/cleaning protocols
 - Invest in environmental cleaning
 - Promote education to make infection prevention part of every HCW's practice
- Control of Superbug outbreaks
 - Roll out the state budget approved infection control and antimicrobial stewardship IT solution for Mx, surveillance and reporting
 - Currently using either outdated and unsupported EICAT (not Win7 compatible), Excel spreadsheets and card systems
 - We need the HIN support and ongoing maintenance funding
 - Invest in molecular typing (whole genome sequencing)